Energy- and entropy-based stabilization for lossless dynamical systems via hybrid controllers.

A novel class of dynamic, energy-based hybrid controllers is proposed as a means for achieving enhanced energy dissipation in lossless dynamical systems. These dynamic controllers combine a logical switching architecture with continuous dynamics to guarantee that the system plant energy is strictly...

Full description

Bibliographic Details
Main Authors: Haddad, Wassim., Chellaboina, VijaySekhar., Hui, Qing., Nersesov, Sergey.
Format: Villanova Faculty Authorship
Language:English
Published: 2007
Online Access:http://ezproxy.villanova.edu/login?url=https://digital.library.villanova.edu/Item/vudl:178292
Description
Summary:A novel class of dynamic, energy-based hybrid controllers is proposed as a means for achieving enhanced energy dissipation in lossless dynamical systems. These dynamic controllers combine a logical switching architecture with continuous dynamics to guarantee that the system plant energy is strictly decreasing across switchings. The general framework leads to closed-loop systems described by impulsive differential equations. In addition, we construct hybrid dynamic controllers that guarantee that the closed-loop system is consistent with basic thermodynamic principles. In particular, the existence of an entropy function for the closed-loop system is established that satisfies a hybrid Clausius-type inequality. Special cases of energy-based and entropy-based hybrid controllers involving state-dependent switching are described.