Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
A new version of the Teukolsky master equation, describing any massless field of spin s = 1/2, 1, 3/2 or 2 in a Kerr black hole, is presented here in the form of a wave equation containing additional curvature terms. These results suggest a relation between curvature perturbation theory in general r...
Main Authors:  , , , 

Format:  
Language:  English 
Published: 
2002

Online Access:  http://ezproxy.villanova.edu/login?url=https://digital.library.villanova.edu/Item/vudl:177406 
id 
vudl:177406 

record_format 
vudl 
institution 
Villanova University 
collection 
Digital Library 
modeltype_str_mv 
vudlsystem:CoreModel vudlsystem:CollectionModel vudlsystem:ResourceCollection 
datastream_str_mv 
PARENTLIST DC PARENTLISTRAW MEMBERQUERY MEMBERLISTRAW LICENSE PARENTQUERY AUDIT AGENTS RELSEXT PROCESSMD LEGACYMETS THUMBNAIL STRUCTMAP 
hierarchytype 

hierarchy_all_parents_str_mv 
vudl:177342 vudl:172968 vudl:641262 vudl:3 vudl:1 
sequence_vudl_177342_str 
0000000022 
hierarchy_top_id 
vudl:641262 
hierarchy_top_title 
Villanova Faculty Publications 
fedora_parent_id_str_mv 
vudl:177342 
hierarchy_first_parent_id_str 
vudl:177406 
hierarchy_parent_id 
vudl:177342 
hierarchy_parent_title 
Jantzen Robert 
hierarchy_sequence_sort_str 
0000000022 
hierarchy_sequence 
0000000022 
spelling 
Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. Bini, Donato. Cherubini, Christian. Jantzen, Robert. Ruffini, Remo. A new version of the Teukolsky master equation, describing any massless field of spin s = 1/2, 1, 3/2 or 2 in a Kerr black hole, is presented here in the form of a wave equation containing additional curvature terms. These results suggest a relation between curvature perturbation theory in general relativity and the exact wave equations satisfied by the Weyl and the Maxwell tensors, known in the literature as the de RhamLichnerowicz Laplacian equations. We discuss these Laplacians both in terms of the NewmanPenrose formalism and the GerochHeldPenrose variant for an arbitrary vacuum spacetime. A perturbative expansion of these wave equations results in a recursive scheme valid for higher orders. This approach, apart from the obvious implications for gravitational and electromagnetic wave propagation in a curved spacetime, explains and extends the perturbative analysis results in the literature by clarifying their origins in the exact theory. 2002 Villanova Faculty Authorship vudl:177406 Progress of Theoretical Physics 107(5), May 2002, 967992. en 
dc.title_txt_mv 
Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. 
dc.creator_txt_mv 
Bini, Donato. Cherubini, Christian. Jantzen, Robert. Ruffini, Remo. 
dc.description_txt_mv 
A new version of the Teukolsky master equation, describing any massless field of spin
s = 1/2, 1, 3/2 or 2 in a Kerr black hole, is presented here in the form of a wave equation
containing additional curvature terms. These results suggest a relation between curvature
perturbation theory in general relativity and the exact wave equations satisfied by the Weyl
and the Maxwell tensors, known in the literature as the de RhamLichnerowicz Laplacian
equations. We discuss these Laplacians both in terms of the NewmanPenrose formalism
and the GerochHeldPenrose variant for an arbitrary vacuum spacetime. A perturbative
expansion of these wave equations results in a recursive scheme valid for higher orders. This
approach, apart from the obvious implications for gravitational and electromagnetic wave
propagation in a curved spacetime, explains and extends the perturbative analysis results in
the literature by clarifying their origins in the exact theory. 
dc.date_txt_mv 
2002 
dc.format_txt_mv 
Villanova Faculty Authorship 
dc.identifier_txt_mv 
vudl:177406 
dc.source_txt_mv 
Progress of Theoretical Physics 107(5), May 2002, 967992. 
dc.language_txt_mv 
en 
author 
Bini, Donato. Cherubini, Christian. Jantzen, Robert. Ruffini, Remo. 
spellingShingle 
Bini, Donato. Cherubini, Christian. Jantzen, Robert. Ruffini, Remo. Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. 
author_facet 
Bini, Donato. Cherubini, Christian. Jantzen, Robert. Ruffini, Remo. 
dc_source_str_mv 
Progress of Theoretical Physics 107(5), May 2002, 967992. 
format 
Villanova Faculty Authorship 
author_sort 
Bini, Donato. 
dc_date_str 
2002 
dc_title_str 
Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. 
description 
A new version of the Teukolsky master equation, describing any massless field of spin
s = 1/2, 1, 3/2 or 2 in a Kerr black hole, is presented here in the form of a wave equation
containing additional curvature terms. These results suggest a relation between curvature
perturbation theory in general relativity and the exact wave equations satisfied by the Weyl
and the Maxwell tensors, known in the literature as the de RhamLichnerowicz Laplacian
equations. We discuss these Laplacians both in terms of the NewmanPenrose formalism
and the GerochHeldPenrose variant for an arbitrary vacuum spacetime. A perturbative
expansion of these wave equations results in a recursive scheme valid for higher orders. This
approach, apart from the obvious implications for gravitational and electromagnetic wave
propagation in a curved spacetime, explains and extends the perturbative analysis results in
the literature by clarifying their origins in the exact theory. 
title 
Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. 
title_full 
Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. 
title_fullStr 
Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. 
title_full_unstemmed 
Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. 
title_short 
Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. 
title_sort 
teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. 
publishDate 
2002 
normalized_sort_date 
20020101T00:00:00Z 
language 
English 
collection_title_sort_str 
teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. 
relsext.itemID_txt_mv 
oai:digital.library.villanova.edu:vudl:177406 
relsext.hasModel_txt_mv 
http://hades.library.villanova.edu:8080/rest/vudlsystem:CoreModel http://hades.library.villanova.edu:8080/rest/vudlsystem:CollectionModel http://hades.library.villanova.edu:8080/rest/vudlsystem:ResourceCollection 
fgs.ownerId_txt_mv 
diglibEditor 
relsext.sequence_txt_mv 
vudl:177342#22 
fgs.lastModifiedBy_txt_mv 
fedoraAdmin 
fgs.type_txt_mv 
http://www.w3.org/ns/ldp#Resource http://www.w3.org/ns/ldp#BasicContainer http://fedora.info/definitions/v4/repository#Container http://www.w3.org/ns/ldp#Container http://www.w3.org/ns/ldp#RDFSource http://fedora.info/definitions/v4/repository#Resource 
relsext.sortOn_txt_mv 
title 
fgs.label_txt_mv 
Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum. 
fgs.createdDate_txt_mv 
20130122T06:28:01.075Z 
relsext.hasLegacyURL_txt_mv 
http://digital.library.villanova.edu/Villanova%20Digital%20Collection/Faculty%20Fulltext/Jantzen%20Robert/JantzenRobert95d47d7265b64f48a9d015b162063bde.xml 
fgs.createdBy_txt_mv 
fedoraAdmin 
relsext.isMemberOf_txt_mv 
http://hades.library.villanova.edu:8080/rest/vudl:177342 
fgs.state_txt_mv 
Active 
fgs.lastModifiedDate_txt_mv 
20210412T19:09:51.823Z 
has_order_str 
no 
agent.name_txt_mv 
Falvey Memorial Library, Villanova University klk 
license.mdRef_str 
http://digital.library.villanova.edu/copyright.html 
license_str 
protected 
has_thumbnail_str 
true 
THUMBNAIL_contentDigest_digest_str 
203c69e18f4f46c81e9892448d2c07cd 
first_indexed 
20140111T22:28:21Z 
last_indexed 
20210412T19:38:11Z 
_version_ 
1755664119831199744 
subpages 