Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.

A new version of the Teukolsky master equation, describing any massless field of spin s = 1/2, 1, 3/2 or 2 in a Kerr black hole, is presented here in the form of a wave equation containing additional curvature terms. These results suggest a relation between curvature perturbation theory in general r...

Full description

Bibliographic Details
Main Authors: Bini, Donato., Cherubini, Christian., Jantzen, Robert., Ruffini, Remo.
Format: Villanova Faculty Authorship
Language:English
Published: 2002
Online Access:http://ezproxy.villanova.edu/login?url=https://digital.library.villanova.edu/Item/vudl:177406
id vudl:177406
record_format vudl
institution Villanova University
collection Digital Library
modeltype_str_mv vudl-system:CoreModel
vudl-system:CollectionModel
vudl-system:ResourceCollection
datastream_str_mv PARENT-LIST
DC
PARENT-LIST-RAW
MEMBER-QUERY
MEMBER-LIST-RAW
LICENSE
PARENT-QUERY
AUDIT
AGENTS
RELS-EXT
PROCESS-MD
LEGACY-METS
THUMBNAIL
STRUCTMAP
hierarchytype
hierarchy_all_parents_str_mv vudl:177342
vudl:172968
vudl:641262
vudl:3
vudl:1
sequence_vudl_177342_str 0000000022
hierarchy_top_id vudl:641262
hierarchy_top_title Villanova Faculty Publications
fedora_parent_id_str_mv vudl:177342
hierarchy_first_parent_id_str vudl:177406
hierarchy_parent_id vudl:177342
hierarchy_parent_title Jantzen Robert
hierarchy_sequence_sort_str 0000000022
hierarchy_sequence 0000000022
spelling Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
Bini, Donato.
Cherubini, Christian.
Jantzen, Robert.
Ruffini, Remo.
A new version of the Teukolsky master equation, describing any massless field of spin s = 1/2, 1, 3/2 or 2 in a Kerr black hole, is presented here in the form of a wave equation containing additional curvature terms. These results suggest a relation between curvature perturbation theory in general relativity and the exact wave equations satisfied by the Weyl and the Maxwell tensors, known in the literature as the de Rham-Lichnerowicz Laplacian equations. We discuss these Laplacians both in terms of the Newman-Penrose formalism and the Geroch-Held-Penrose variant for an arbitrary vacuum spacetime. A perturbative expansion of these wave equations results in a recursive scheme valid for higher orders. This approach, apart from the obvious implications for gravitational and electromagnetic wave propagation in a curved spacetime, explains and extends the perturbative analysis results in the literature by clarifying their origins in the exact theory.
2002
Villanova Faculty Authorship
vudl:177406
Progress of Theoretical Physics 107(5), May 2002, 967-992.
en
dc.title_txt_mv Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
dc.creator_txt_mv Bini, Donato.
Cherubini, Christian.
Jantzen, Robert.
Ruffini, Remo.
dc.description_txt_mv A new version of the Teukolsky master equation, describing any massless field of spin s = 1/2, 1, 3/2 or 2 in a Kerr black hole, is presented here in the form of a wave equation containing additional curvature terms. These results suggest a relation between curvature perturbation theory in general relativity and the exact wave equations satisfied by the Weyl and the Maxwell tensors, known in the literature as the de Rham-Lichnerowicz Laplacian equations. We discuss these Laplacians both in terms of the Newman-Penrose formalism and the Geroch-Held-Penrose variant for an arbitrary vacuum spacetime. A perturbative expansion of these wave equations results in a recursive scheme valid for higher orders. This approach, apart from the obvious implications for gravitational and electromagnetic wave propagation in a curved spacetime, explains and extends the perturbative analysis results in the literature by clarifying their origins in the exact theory.
dc.date_txt_mv 2002
dc.format_txt_mv Villanova Faculty Authorship
dc.identifier_txt_mv vudl:177406
dc.source_txt_mv Progress of Theoretical Physics 107(5), May 2002, 967-992.
dc.language_txt_mv en
author Bini, Donato.
Cherubini, Christian.
Jantzen, Robert.
Ruffini, Remo.
spellingShingle Bini, Donato.
Cherubini, Christian.
Jantzen, Robert.
Ruffini, Remo.
Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
author_facet Bini, Donato.
Cherubini, Christian.
Jantzen, Robert.
Ruffini, Remo.
dc_source_str_mv Progress of Theoretical Physics 107(5), May 2002, 967-992.
format Villanova Faculty Authorship
author_sort Bini, Donato.
dc_date_str 2002
dc_title_str Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
description A new version of the Teukolsky master equation, describing any massless field of spin s = 1/2, 1, 3/2 or 2 in a Kerr black hole, is presented here in the form of a wave equation containing additional curvature terms. These results suggest a relation between curvature perturbation theory in general relativity and the exact wave equations satisfied by the Weyl and the Maxwell tensors, known in the literature as the de Rham-Lichnerowicz Laplacian equations. We discuss these Laplacians both in terms of the Newman-Penrose formalism and the Geroch-Held-Penrose variant for an arbitrary vacuum spacetime. A perturbative expansion of these wave equations results in a recursive scheme valid for higher orders. This approach, apart from the obvious implications for gravitational and electromagnetic wave propagation in a curved spacetime, explains and extends the perturbative analysis results in the literature by clarifying their origins in the exact theory.
title Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
title_full Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
title_fullStr Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
title_full_unstemmed Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
title_short Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
title_sort teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
publishDate 2002
normalized_sort_date 2002-01-01T00:00:00Z
language English
collection_title_sort_str teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
relsext.itemID_txt_mv oai:digital.library.villanova.edu:vudl:177406
relsext.hasModel_txt_mv http://hades.library.villanova.edu:8080/rest/vudl-system:CoreModel
http://hades.library.villanova.edu:8080/rest/vudl-system:CollectionModel
http://hades.library.villanova.edu:8080/rest/vudl-system:ResourceCollection
fgs.ownerId_txt_mv diglibEditor
relsext.sequence_txt_mv vudl:177342#22
fgs.lastModifiedBy_txt_mv fedoraAdmin
fgs.type_txt_mv http://www.w3.org/ns/ldp#Resource
http://www.w3.org/ns/ldp#BasicContainer
http://fedora.info/definitions/v4/repository#Container
http://www.w3.org/ns/ldp#Container
http://www.w3.org/ns/ldp#RDFSource
http://fedora.info/definitions/v4/repository#Resource
relsext.sortOn_txt_mv title
fgs.label_txt_mv Teukolsky master equation: de rham wave equation for gravitational and electromagnetic fields in vacuum.
fgs.createdDate_txt_mv 2013-01-22T06:28:01.075Z
relsext.hasLegacyURL_txt_mv http://digital.library.villanova.edu/Villanova%20Digital%20Collection/Faculty%20Fulltext/Jantzen%20Robert/JantzenRobert-95d47d72-65b6-4f48-a9d0-15b162063bde.xml
fgs.createdBy_txt_mv fedoraAdmin
relsext.isMemberOf_txt_mv http://hades.library.villanova.edu:8080/rest/vudl:177342
fgs.state_txt_mv Active
fgs.lastModifiedDate_txt_mv 2021-04-12T19:09:51.823Z
has_order_str no
agent.name_txt_mv Falvey Memorial Library, Villanova University
klk
license.mdRef_str http://digital.library.villanova.edu/copyright.html
license_str protected
has_thumbnail_str true
THUMBNAIL_contentDigest_digest_str 203c69e18f4f46c81e9892448d2c07cd
first_indexed 2014-01-11T22:28:21Z
last_indexed 2021-04-12T19:38:11Z
_version_ 1755664119831199744
subpages