A surprising MLE for interval-censored binomial data.

We derive the maximum likelihood estimator of the binomial success probability when the number of trials is known, but the number of successes is only known to fall in some interval. This estimator has a surprisingly simple form. Specifically, the maximum likelihood estimate of the log odds of succe...

Full description

Bibliographic Details
Main Authors: Frey, Jesse., Marrero, Osvaldo.
Format: Villanova Faculty Authorship
Language:English
Published: 2008
Online Access:http://ezproxy.villanova.edu/login?url=https://digital.library.villanova.edu/Item/vudl:176349
id vudl:176349
record_format vudl
institution Villanova University
collection Digital Library
modeltype_str_mv vudl-system:ResourceCollection
vudl-system:CollectionModel
vudl-system:CoreModel
datastream_str_mv DC
PROCESS-MD
AGENTS
RELS-EXT
PARENT-LIST
LICENSE
THUMBNAIL
STRUCTMAP
AUDIT
LEGACY-METS
PARENT-QUERY
MEMBER-QUERY
MEMBER-LIST-RAW
PARENT-LIST-RAW
hierarchytype
hierarchy_all_parents_str_mv vudl:176339
vudl:172968
vudl:641262
vudl:3
vudl:1
sequence_vudl_176339_str 0000000004
hierarchy_top_id vudl:641262
hierarchy_top_title Villanova Faculty Publications
fedora_parent_id_str_mv vudl:176339
hierarchy_first_parent_id_str vudl:176349
hierarchy_parent_id vudl:176339
hierarchy_parent_title Frey Jesse
hierarchy_sequence_sort_str 0000000004
hierarchy_sequence 0000000004
spelling A surprising MLE for interval-censored binomial data.
Frey, Jesse.
Marrero, Osvaldo.
We derive the maximum likelihood estimator of the binomial success probability when the number of trials is known, but the number of successes is only known to fall in some interval. This estimator has a surprisingly simple form. Specifically, the maximum likelihood estimate of the log odds of success is the mean of the maximum likelihood estimates of the log odds of success that are obtained by letting the number of successes take on each integer value in the interval. An application is suggested.
2008
Villanova Faculty Authorship
vudl:176349
The American Statistician 62(2), May 2008, 135-138.
en
dc.title_txt_mv A surprising MLE for interval-censored binomial data.
dc.creator_txt_mv Frey, Jesse.
Marrero, Osvaldo.
dc.description_txt_mv We derive the maximum likelihood estimator of the binomial success probability when the number of trials is known, but the number of successes is only known to fall in some interval. This estimator has a surprisingly simple form. Specifically, the maximum likelihood estimate of the log odds of success is the mean of the maximum likelihood estimates of the log odds of success that are obtained by letting the number of successes take on each integer value in the interval. An application is suggested.
dc.date_txt_mv 2008
dc.format_txt_mv Villanova Faculty Authorship
dc.identifier_txt_mv vudl:176349
dc.source_txt_mv The American Statistician 62(2), May 2008, 135-138.
dc.language_txt_mv en
author Frey, Jesse.
Marrero, Osvaldo.
spellingShingle Frey, Jesse.
Marrero, Osvaldo.
A surprising MLE for interval-censored binomial data.
author_facet Frey, Jesse.
Marrero, Osvaldo.
dc_source_str_mv The American Statistician 62(2), May 2008, 135-138.
format Villanova Faculty Authorship
author_sort Frey, Jesse.
dc_date_str 2008
dc_title_str A surprising MLE for interval-censored binomial data.
description We derive the maximum likelihood estimator of the binomial success probability when the number of trials is known, but the number of successes is only known to fall in some interval. This estimator has a surprisingly simple form. Specifically, the maximum likelihood estimate of the log odds of success is the mean of the maximum likelihood estimates of the log odds of success that are obtained by letting the number of successes take on each integer value in the interval. An application is suggested.
title A surprising MLE for interval-censored binomial data.
title_full A surprising MLE for interval-censored binomial data.
title_fullStr A surprising MLE for interval-censored binomial data.
title_full_unstemmed A surprising MLE for interval-censored binomial data.
title_short A surprising MLE for interval-censored binomial data.
title_sort surprising mle for interval-censored binomial data.
publishDate 2008
normalized_sort_date 2008-01-01T00:00:00Z
language English
collection_title_sort_str surprising mle for interval-censored binomial data.
relsext.hasModel_txt_mv http://hades.library.villanova.edu:8080/rest/vudl-system:ResourceCollection
http://hades.library.villanova.edu:8080/rest/vudl-system:CollectionModel
http://hades.library.villanova.edu:8080/rest/vudl-system:CoreModel
relsext.sortOn_txt_mv title
fgs.type_txt_mv http://fedora.info/definitions/v4/repository#Resource
http://www.w3.org/ns/ldp#Container
http://www.w3.org/ns/ldp#RDFSource
http://www.w3.org/ns/ldp#Resource
http://www.w3.org/ns/ldp#BasicContainer
http://fedora.info/definitions/v4/repository#Container
relsext.itemID_txt_mv oai:digital.library.villanova.edu:vudl:176349
fgs.ownerId_txt_mv diglibEditor
relsext.isMemberOf_txt_mv http://hades.library.villanova.edu:8080/rest/vudl:176339
fgs.label_txt_mv A surprising MLE for interval-censored binomial data.
fgs.createdDate_txt_mv 2013-01-22T05:31:20.349Z
fgs.state_txt_mv Active
fgs.createdBy_txt_mv fedoraAdmin
fgs.lastModifiedBy_txt_mv fedoraAdmin
relsext.sequence_txt_mv vudl:176339#4
relsext.hasLegacyURL_txt_mv http://digital.library.villanova.edu/Villanova%20Digital%20Collection/Faculty%20Fulltext/Frey%20Jesse/FreyJesse-7f691ecc-61b3-40d5-a702-c13a481a511b.xml
fgs.lastModifiedDate_txt_mv 2021-04-12T19:18:17.840Z
has_order_str no
agent.name_txt_mv Falvey Memorial Library, Villanova University
KHL
license.mdRef_str http://digital.library.villanova.edu/copyright.html
license_str protected
has_thumbnail_str true
THUMBNAIL_contentDigest_digest_str 203c69e18f4f46c81e9892448d2c07cd
first_indexed 2014-01-11T22:16:41Z
last_indexed 2021-04-12T20:07:40Z
_version_ 1755565682087428096
subpages