MVDR Beamforming for Through-the-Wall Radar Imaging.

We present high-definition imaging for targets behind walls and enclosed structures based on constrained minimization RF multisensor processing. Minimum variance distortionless response (MVDR) beamforming is used on both sensor-frequency raw data radar returns and spatial spectrum data, which is obtained by the Fourier transform of the delay and sum beamformer image. We compare both methods for near-field and far-field scenes. The paper considers both cases of known and unknown wall parameters and uses manifold constraints to allow target localization in high-definition imaging in the presence of wall errors. Also, through analyses and simulations, we show how to effectively use the spatial spectrum to improve covariance matrix estimation and subsequently enhance image quality in the sense of lower sidelobes.

Main Author: Yoon, Yeo-Sun.
Other Authors: Amin, Moeness G., Ahmad, Fauzia.
Language: English
Published: 2011
Online Access: http://ezproxy.villanova.edu/login?url=https://digital.library.villanova.edu/Item/vudl:173489
PID vudl:173489
id vudl:173489
modeltype_str_mv vudl-system:CoreModel
vudl-system:CollectionModel
vudl-system:ResourceCollection
datastream_str_mv DC
PARENT-QUERY
PARENT-LIST-RAW
PARENT-LIST
MEMBER-QUERY
MEMBER-LIST-RAW
LEGACY-METS
LICENSE
AGENTS
PROCESS-MD
THUMBNAIL
STRUCTMAP
RELS-EXT
hierarchytype
sequence_vudl_173023_str 0000000156
has_order_str no
hierarchy_top_id vudl:171664
hierarchy_top_title Villanova Digital Collection
hierarchy_parent_id vudl:173023
hierarchy_parent_title Amin Moeness
hierarchy_sequence 0000000156
hierarchy_first_parent_id_str vudl:173489
hierarchy_sequence_sort_str 0000000156
hierarchy_all_parents_str_mv vudl:172968
vudl:171664
vudl:173023
first_indexed 2014-01-11T21:56:08Z
last_indexed 2014-01-11T21:56:08Z
recordtype vudl
fullrecord <root> <url> http://digital.library.villanova.edu/files/vudl:173489/DC </url> <thumbnail> http://digital.library.villanova.edu/files/vudl:173489/THUMBNAIL </thumbnail> </root>
spelling
institution Villanova University
collection Digital Library
language English
dc_source_str_mv IEEE Transactions on Aerospace and Electronic Systems, January 2011.
author Yoon, Yeo-Sun.
author_facet_str_mv Yoon, Yeo-Sun.
Amin, Moeness G.
Ahmad, Fauzia.
author_or_contributor_facet_str_mv Yoon, Yeo-Sun.
Amin, Moeness G.
Ahmad, Fauzia.
author_s Yoon, Yeo-Sun.
spellingShingle Yoon, Yeo-Sun.
MVDR Beamforming for Through-the-Wall Radar Imaging.
author-letter Yoon, Yeo-Sun.
author_sort_str Yoon, Yeo-Sun.
author2 Amin, Moeness G.
Ahmad, Fauzia.
author2Str Amin, Moeness G.
Ahmad, Fauzia.
dc_title_str MVDR Beamforming for Through-the-Wall Radar Imaging.
title MVDR Beamforming for Through-the-Wall Radar Imaging.
title_short MVDR Beamforming for Through-the-Wall Radar Imaging.
title_full MVDR Beamforming for Through-the-Wall Radar Imaging.
title_fullStr MVDR Beamforming for Through-the-Wall Radar Imaging.
title_full_unstemmed MVDR Beamforming for Through-the-Wall Radar Imaging.
collection_title_sort_str mvdr beamforming for through-the-wall radar imaging.
title_sort mvdr beamforming for through-the-wall radar imaging.
description We present high-definition imaging for targets behind walls and enclosed structures based on constrained minimization RF multisensor processing. Minimum variance distortionless response (MVDR) beamforming is used on both sensor-frequency raw data radar returns and spatial spectrum data, which is obtained by the Fourier transform of the delay and sum beamformer image. We compare both methods for near-field and far-field scenes. The paper considers both cases of known and unknown wall parameters and uses manifold constraints to allow target localization in high-definition imaging in the presence of wall errors. Also, through analyses and simulations, we show how to effectively use the spatial spectrum to improve covariance matrix estimation and subsequently enhance image quality in the sense of lower sidelobes.
publishDate 2011
normalized_sort_date 2011-01-01T00:00:00Z
dc_date_str 2011
license_str protected
REPOSITORYNAME FgsRepos
REPOSBASEURL http://hades.library.villanova.edu:8088/fedora
fgs.state Active
fgs.label MVDR Beamforming for Through-the-Wall Radar Imaging.
fgs.ownerId diglibEditor
fgs.createdDate 2013-01-22T02:53:55.196Z
fgs.lastModifiedDate 2013-12-05T17:02:51.891Z
dc.title MVDR Beamforming for Through-the-Wall Radar Imaging.
dc.creator Yoon, Yeo-Sun.
Amin, Moeness G.
Ahmad, Fauzia.
dc.description We present high-definition imaging for targets behind walls and enclosed structures based on constrained minimization RF multisensor processing. Minimum variance distortionless response (MVDR) beamforming is used on both sensor-frequency raw data radar returns and spatial spectrum data, which is obtained by the Fourier transform of the delay and sum beamformer image. We compare both methods for near-field and far-field scenes. The paper considers both cases of known and unknown wall parameters and uses manifold constraints to allow target localization in high-definition imaging in the presence of wall errors. Also, through analyses and simulations, we show how to effectively use the spatial spectrum to improve covariance matrix estimation and subsequently enhance image quality in the sense of lower sidelobes.
dc.date 2011
dc.identifier vudl:173489
dc.source IEEE Transactions on Aerospace and Electronic Systems, January 2011.
dc.language en
license.mdRef http://digital.library.villanova.edu/copyright.html
agent.name Falvey Memorial Library, Villanova University
KHL
has_thumbnail true
THUMBNAIL_contentDigest_type MD5
THUMBNAIL_contentDigest_digest 203c69e18f4f46c81e9892448d2c07cd
THUMBNAIL_contentLocation_type INTERNAL_ID
THUMBNAIL_contentLocation_ref http://hades-vm.library.villanova.edu:8088/fedora/get/vudl:173489/THUMBNAIL/2013-01-22T02:53:58.115Z
relsext.hasModel info:fedora/vudl-system:CoreModel
info:fedora/vudl-system:CollectionModel
info:fedora/vudl-system:ResourceCollection
relsext.itemID oai:digital.library.villanova.edu:vudl:173489
relsext.isMemberOf info:fedora/vudl:173023
relsext.hasLegacyURL http://digital.library.villanova.edu/Villanova%20Digital%20Collection/Faculty%20Fulltext/Amin%20Moeness/AminMoeness-0caef8be-1f17-40fd-8ca5-ad54b2f5981f.xml
relsext.sortOn title
relsext.sequence vudl:173023#156
_version_ 1644305444393451520
score 13.682575
subpages