Finite-time stabilization of nonlinear impulsive dynamical systems.

Finite-time stability involves dynamical systems whose trajectories converge to a Lyapunov stable equilibrium state in finite time. For continuous-time dynamical systems finite-time convergence implies nonuniqueness of system solutions in reverse time, and hence, such systems possess non-Lipschitzian dynamics. For impulsive dynamical systems, however, it may be possible to reset the system states to an equilibrium state achieving finite-time convergence without requiring non-Lipschitzian system dynamics. In this paper, we develop sufficient conditions for finite-time stability of impulsive dynamical systems using both scalar and vector Lyapunov functions. Furthermore, we design hybrid finite-time stabilizing controllers for impulsive dynamical systems that are robust against full modelling uncertainty. Finally, we present a numerical example for finite-time stabilization of large-scale impulsive dynamical systems.

Main Author: Nersesov, Sergey.
Other Authors: Haddad, Wassim.
Language: English
Published: 2007
Online Access: http://ezproxy.villanova.edu/login?url=https://digital.library.villanova.edu/Item/vudl:178301