Energy- and entropy-based stabilization for lossless dynamical systems via hybrid controllers.

A novel class of dynamic, energy-based hybrid controllers is proposed as a means for achieving enhanced energy dissipation in lossless dynamical systems. These dynamic controllers combine a logical switching architecture with continuous dynamics to guarantee that the system plant energy is strictly decreasing across switchings. The general framework leads to closed-loop systems described by impulsive differential equations. In addition, we construct hybrid dynamic controllers that guarantee that the closed-loop system is consistent with basic thermodynamic principles. In particular, the existence of an entropy function for the closed-loop system is established that satisfies a hybrid Clausius-type inequality. Special cases of energy-based and entropy-based hybrid controllers involving state-dependent switching are described.

Main Author: Haddad, Wassim.
Other Authors: Chellaboina, VijaySekhar., Hui, Qing., Nersesov, Sergey.
Language: English
Published: 2007
Online Access: http://ezproxy.villanova.edu/login?url=https://digital.library.villanova.edu/Item/vudl:178292